Leveraging Diversity and Sparsity in Blind Deconvolution
نویسندگان
چکیده
منابع مشابه
Leveraging Diversity and Sparsity in Blind Deconvolution
This paper considers recovering L-dimensional vectors w, and xn, n = 1, . . . , N from their circular convolutions yn = w∗xn. The vector w is assumed to be S-sparse in a known basis that is spread out in the Fourier domain, and each input xn is a member of a known K-dimensional random subspace. We prove that whenever K + S log S . L/ log(LN), the problem can be solved effectively by using only ...
متن کاملBlind Deconvolution with Re-weighted Sparsity Promotion
Blind deconvolution has made significant progress in the past decade. Most successful algorithms are classified either as Variational or Maximum a-Posteriori (MAP ). In spite of the superior theoretical justification of variational techniques, carefully constructed MAP algorithms have proven equally effective in practice. In this paper, we show that all successful MAP and variational algorithms...
متن کاملBlind Deconvolution with Non-local Sparsity Reweighting
Blind deconvolution has made significant progress in the past decade. Most successful algorithms are classified either as Variational or Maximum a-Posteriori (MAP ). In spite of the superior theoretical justification of variational techniques, carefully constructed MAP algorithms have proven equally effective in practice. In this paper, we show that all successful MAP and variational algorithms...
متن کاملSparsity in Bayesian Blind Source Separation and Deconvolution
Blind source separation algorithms are based on various separation criteria. Differences in convolution kernels of the sources are common assumptions in audio and image processing. Since it is still an ill posed problem, any additional information is beneficial. In this contribution, we investigate the use of sparsity criteria for both the source signal and the convolution kernels. A probabilis...
متن کاملMorphological Diversity and Sparsity in Blind Source Separation
This paper describes a new blind source separation method for instantaneous linear mixtures. This new method coined GMCA (Generalized Morphological Component Analysis) relies on morphological diversity. It provides new insights on the use of sparsity for blind source separation in a noisy environment. GMCA takes advantage of the sparse representation of structured data in large overcomplete sig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2018
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2017.2788444